readProteomeExperiment reads and processes proteomics data from
multiple samples, applying various quality filters, and returns a
SummarizedExperiment object.
Arguments
- fileTable
A
data.tableordata.framecontaining the file information with columns for file names, sample names, and IDs.- fdrCut
A
numericvalue specifying the maximum false discovery rate (FDR) threshold. Default is 0.1.- scoreCut
A
numericvalue specifying the minimum score threshold. Default is 10.- pepNumCut
A
numericvalue specifying the minimum number of peptides required for a protein to be included. Default is 1.- ifLFQ
A
logicalvalue indicating whether to use LFQ quantification. Default isTRUE.
Details
This function processes proteomics data by filtering based on FDR, score,
and peptide count, and optionally using LFQ quantification. It aggregates
the data from multiple samples and constructs a SummarizedExperiment
object.
Examples
file1 <- system.file("extdata", "phosDDA_1.xls", package = "SmartPhos")
file2 <- system.file("extdata", "proteomeDDA_1.xls", package = "SmartPhos")
# Create fileTable
fileTable <- data.frame(
searchType = c("phosphoproteome", "proteome"),
fileName = c(file1, file2),
sample = c("Sample1", "sample1"),
id = c("s1", "s2")
)
# Call the function
readProteomeExperiment(fileTable, fdrCut = 0.1, scoreCut = 10,
pepNumCut = 1, ifLFQ = TRUE)
#> class: SummarizedExperiment
#> dim: 2 1
#> metadata(0):
#> assays(1): Intensity
#> rownames(2): p1 p2
#> rowData names(3): UniprotID Gene PeptideCounts
#> colnames(1): s2
#> colData names(0):