preprocessProteome
preprocesses proteome data stored in a
SummarizedExperiment
object by performing filtering, transformation,
normalization, imputation, and batch effect removal.
Arguments
- seData
A
SummarizedExperiment
object containing proteome data.- filterList
A
list
of filters to apply on the samples. Default isNULL
.- missCut
Numeric
value specifying the missing value cutoff percentage for filtering features. Default is 50.- transform
Character
string specifying the transformation method ("log2", "vst", "none"). Default is "log2".- normalize
Logical
value indicating whether to normalize the data. Default isFALSE
.- getPP
Logical
value indicating whether to retrieve PP samples. Default isFALSE
.- removeOutlier
Character
vector of samples to be removed as outliers. Default isNULL
.- impute
Character
string specifying the imputation method ("QRILC", "MLE", "bpca", "missForest", "MinDet", "none"). Default is "none".- batch
Character
vector specifying batch effects to remove. Default isNULL
.- verbose
Logical
value indicating whether to print detailed information. Default isFALSE
.- scaleFactorTab
Data frame
containing scale factors for normalization. Default isNULL
.
Examples
library(SummarizedExperiment)
# Load multiAssayExperiment object
data("dia_example")
# Get SummarizedExperiment object
se <- dia_example[["Proteome"]]
colData(se) <- colData(dia_example)
# Call the function
preprocessProteome(seData = se, normalize = TRUE, impute = "QRILC")
#> Imputing along margin 2 (samples/columns).
#> class: SummarizedExperiment
#> dim: 491 27
#> metadata(0):
#> assays(2): Intensity imputed
#> rownames(491): p1 p2 ... p499 p500
#> rowData names(2): UniprotID Gene
#> colnames(27): FullProteome_1stCrtl_0min_rep2
#> FullProteome_1stCrtl_0min_rep3 ... FullProteome_HGF_24h_rep1
#> FullProteome_HGF_100min_rep1
#> colData names(6): sample treatment ... sampleType sampleName