plotPCA
generates a PCA plot using the results from a PCA analysis
and a SummarizedExperiment
object. The points on the plot can be
colored and shaped based on metadata.
Arguments
- pca
A PCA result object, typically obtained from
prcomp
.- se
A
SummarizedExperiment
object containing the metadata.- xaxis
A
character
string specifying which principal component to use for the x-axis. Default is "PC1".- yaxis
A
character
string specifying which principal component to use for the y-axis. Default is "PC2".- color
A
character
string specifying the metadata column to use for coloring the points. Default is "none".- shape
A
character
string specifying the metadata column to use for shaping the points. Default is "none".
Details
This function creates a PCA plot using the scores from a PCA result object
and metadata from a SummarizedExperiment
object. The x-axis and y-axis
can be customized to display different principal components, and the points
can be optionally colored and shaped based on specified metadata columns.
Examples
# Load multiAssayExperiment object
data("dia_example")
# Get SummarizedExperiment object
se <- dia_example[["Phosphoproteome"]]
SummarizedExperiment::colData(se) <- SummarizedExperiment::colData(
dia_example)
# Generate the imputed assay
result <- preprocessPhos(seData = se, normalize = TRUE, impute = "QRILC")
#> Imputing along margin 2 (samples/columns).
# Perform PCA
pcaResult <- stats::prcomp(t(
SummarizedExperiment::assays(result)[["imputed"]]),
center = TRUE, scale. = TRUE)
# Plot PCA results
plotPCA(pca = pcaResult, se = result, color = "treatment")
#> Error: unable to find an inherited method for function ‘plotPCA’ for signature ‘object = "missing"’