plotHeatmap
generates a heatmap for intensity assay for different
conditions, including top variants, differentially expressed genes, and
selected time series clusters.
Usage
plotHeatmap(
type = c("Top variant", "Differentially expressed", "Selected time series cluster"),
se,
data = NULL,
top = 100,
cutCol = 1,
cutRow = 1,
clustCol = TRUE,
clustRow = TRUE,
annotationCol = NULL,
title = NULL
)
Arguments
- type
A
character
string specifying the type of heatmap to plot. Options are "Top variant", "Differentially expressed", and "Selected time series cluster".- se
A
SummarizedExperiment
object containing the imputed intensity assay.- data
An optional
data frame
containing additional data for "Differentially expressed" and "Selected time series cluster" types. Default isNULL
.- top
A
numeric
value specifying the number of top variants to plot. Default is 100.- cutCol
A
numeric
value specifying the number of clusters for columns. Default is 1.- cutRow
A
numeric
value specifying the number of clusters for rows. Default is 1.- clustCol
A
logical
value indicating whether to cluster columns. Default isTRUE
.- clustRow
A
logical
value indicating whether to cluster rows. Default isTRUE
.- annotationCol
A
character
vector specifying the columns in the metadata to use for annotation. Default isNULL
.- title
A
character
string specifying the title of the heatmap. Default isNULL
.
Details
This function creates a heatmap using the Intensity assay from a
SummarizedExperiment
object. The heatmap can show the top variants
based on standard deviation, differentially expressed genes, or selected time
series clusters. Row normalization is performed, and the heatmap can include
annotations based on specified metadata columns.
Examples
library(SummarizedExperiment)
# Load multiAssayExperiment object
data("dia_example")
# Get SummarizedExperiment object
se <- dia_example[["Phosphoproteome"]]
colData(se) <- colData(dia_example)
# Generate the imputed assay
result <- preprocessPhos(seData = se, normalize = TRUE, impute = "QRILC")
#> Imputing along margin 2 (samples/columns).
# Plot heatmap for top variant
plotHeatmap(type = "Top variant", top = 10, se = result, cutCol = 2)