calcKinaseScore calculates kinase activity scores based on input data
and a specified network of regulatory relationships
(decoupler network).
Usage
calcKinaseScore(
resTab,
decoupler_network,
corrThreshold = 0.9,
statType = c("stat", "log2FC"),
nPerm = 100
)Arguments
- resTab
A
data framecontaining the input data with columns site, stat, and log2FC.- decoupler_network
A
data framerepresenting the decoupleR network with columns source and target.- corrThreshold
A
numericvalue specifying the correlation threshold for filtering correlated regulons. Default is 0.9.- statType
A
characterstring specifying the type of statistic to use. Options are "stat" or "log2FC". Default is "stat".- nPerm
A
numericvalue specifying the number of permutations for the null distribution. Default is 100.
Value
A data frame with kinase activity scores, including columns
for `source`, `score`, and `p_value`.
Details
The function performs the following steps:
Removes duplicate rows based on the site column.
Filters the data to include only those sites present in the target column of the
decoupler network.Prepares the input table based on the specified statType.
Intersects the input table with the
decoupler networkto find common regulons.Checks for correlated regulons and filters out those exceeding the correlation threshold.
Calculates kinase activity using a weighted mean approach.
Processes the results to handle NA values and formats the output.
Examples
resTab <- data.frame(
site = c("EGFR_Y1172", "EGFR_Y1197", "EGFR_S1166", "ROCK2_S1374",
"WASL_Y256", "GAB1_Y259", "ADD1_S586", "EPHA2_Y772", "PRKDC_T2638",
"PRKDC_T2609", "PRKDC_S2612"),
stat = c(-10.038770, -5.945562, 5.773384, -7.303834, 5.585326, 5.971104,
5.199119, -5.169500, 5.130228, 5.407387, 4.493933),
log2FC = c(-2.6113343, -2.4858615, 1.0056629, -1.1561780, 1.6421145,
2.0296634, 1.3766283, -0.8531656, 1.0742881, 1.0042942, 1.0608129)
)
decoupler_network <- data.frame(
source = c(rep("ABL1", 5), rep("CDK2", 6)),
mor = c(rep(1, 11)),
target = c("EGFR_Y1172", "EGFR_Y1197", "EGFR_S1166", "ROCK2_S1374",
"WASL_Y256", "GAB1_Y259", "ADD1_S586", "EPHA2_Y772", "PRKDC_T2638",
"PRKDC_T2609", "PRKDC_S2612"),
likelihood = c(rep(1, 11))
)
# Call the function
calcKinaseScore(resTab, decoupler_network)
#> # A tibble: 2 × 3
#> source score p_value
#> <chr> <dbl> <dbl>
#> 1 ABL1 -2.39 0.72
#> 2 CDK2 3.51 0.18